\
A \

JA

Py

THE ROYAL A

e A

1

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
A
I \
e A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

Mathematical Modelling of Chemical Clock
Reactions. |. Induction, Inhibition and the
lodate--Arsenous-Acid Reaction

J. Billingham and D. J. Needham

Phil. Trans. R. Soc. Lond. A 1992 340, 569-591
doi: 10.1098/rsta.1992.0080

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1992 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;340/1659/569&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/340/1659/569.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Mathematical modelling of chemical clock
reactions. I. Induction, inhibition and the
iodate-arsenous-acid reaction

By J. BirvineaAM! AND D.J. NEEDHA M2
' Schlumberger Cambridge Research, High Cross, My adingley Road,

/ \\ \\

AL B

¥ < Cambridge CB3 OEL, UK.

’_{ ) 2 School of Mathematics, University of East Anglia, Norwich NR4 7TJ, U.K.

<

— >

@) : Contents

E 5 1. Introduction 569

TO 2. Two simple model clock reactions 570

~ (@) Cubic autocatalysis 570

—_ (b) A simple model with an inhibitor 571

52 3. Indirect autocatalysis with an inhibitor: the iodate—arsenous-acid reaction 577

EQ (@) Asymptotic solution of the initial-value problem for 0 <e < 1 with

5& 8= 0(e) and K = 0O(1) 583

aZ O (b) Asymptotic solution of the initial-value problem for K > 1 with e,

95 8=0(1) 586

T (¢) Asymptotic solution of the initial-value problem for 0 <e <1, K> 1 589

i 4. Conclusion 590
References 591

A clock reaction is a chemical reaction that gives rise to an initial induction period
before a significant concentration of one of the chemical species involved is produced.
We study three isothermal model reaction schemes that can exhibit clock reaction
behaviour in a well-stirred situation. We also identify two types of reaction
mechanism that can lead to clock reaction behaviour and indicate which is dominant
in each of the model systems that we study. These include a well-known model of the
iodate—arsenous-acid reaction.

1. Introduction

During a chemical clock reaction the concentration of one of the chemical species
involved (the clock chemical) has the following distinguishing features.

(@) After the initial mixing of the reactants there is an induction period during
which the concentration of the clock chemical is low.

(b) At the end of this induction period the concentration of the clock chemical
increases, often very rapidly.

Typical examples of such reactions are the iodate-arsenous-acid reaction (Hanna
et al. 1982), the iodine-bisulphate clock (Lambert & Fina 1984), the formaldehyde
clock (Jones & Oldham 1963), the hydration of carbon dioxide (Jones ef al. 1964), and
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570 J. Billingham and D. J. Needham

the oxidation of luminol by hydrogen peroxide (Candy et al. 1992), all of which are
solution phase reactions. If a suitable indicator is added to the reaction mixture,
the end of the induction period is marked by a sudden colour change or, in
chemiluminescent reactions such as the oxidation of luminol, a flash of light. As a
consequence, clock reactions are often used as demonstrations of chemical kinetics
for undergraduates (Haggett et al. 1963) and as tricks in ‘chemical magic shows’
(Barrett 1955). A more important class of reactions that can exhibit an induction
period is that of chain reactions (Dainton 1966). These include the photosynthesis of
hydrogen chloride in the presence of ammonia, the photopolymerization of vinyl
acetate in the presence of benzoquinone (Burnett & Melville 1947) and the
atmospheric oxidation of a variety of organic substances (Scott 1965). This type of
reaction often forms the basis of an industrial process, when it is vital to be able to
control, or at least predict, the length of the induction period.

In this paper we study three model, isothermal reaction schemes in a closed, well-
stirred reaction vessel, all of which can exhibit clock behaviour for certain ranges of
parameter values. In §2 we identify two distinct mechanisms that can lead to clock
behaviour and analyse two simple model systems based on these mechanisms. In §3
we study a more complex system that is a combination of those analysed in §2. This
model is well known, and is in good qualitative and quantitative agreement with the
kinetics of both the iodate—arsenous-acid reaction and the iodine—bisulphate clock
reaction. We provide a thorough analysis of the second-order autonomous system of
differential equations which describe the time evolution of the chemical con-
centrations. In particular, we show that clock behaviour can arise from either of the
two mechanisms described in §2, depending upon the initial concentrations of the
reactants.

The analytical methods adopted in the paper provide a general approach for
examining model kinetic schemes for the possibility of clock reaction behaviour.
When clock reaction behaviour is present, simple analytical expressions are obtained
for the induction and inhibition periods, and the evolutionary structure of the
reaction is uncovered.

2. Two simple model clock reactions
(@) Cubic autocatalysis

Autocatalytic reaction steps form the basis of many successful models of chemical
reactions, for example the Belousov—Zhabotinskii reaction (Field & Noyes 1974), the
hydroxylamine-nitric-acid reaction (Gowland & Stedman 1983), the hydrogen—
oxygen and carbon-monoxide—oxygen reactions (Gray ef al. 1984) and, as we shall
discuss in detail in §3, the iodate—arsenous acid reaction and the iodine-bisulphate
clock reaction. Here, we consider cubic autocatalysis,

P+2B 3B, rate kpb? (1)

where P is a reactant and B is the autocatalyst with concentrations p and b
respectively, and k is a reaction rate constant. This simple reaction scheme has been
investigated extensively both in a continuous flow, stirred tank reactor (see, for
example, Gray & Scott 1983) and an unstirred reaction vessel where diffusion acts on
the chemical species P and B (see, for example, Billingham & Needham 1991). For
the purposes of this paper we simply consider cubic autocatalysis in a closed, well-
stirred reaction vessel with initial concentrations p = p,and b = b,. The reaction rate

Phil. Trans. R. Soc. Lond. A (1992)
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Mathematical modelling of chemical clock reactions. I 571

equations are dp/dt = —kpb® and db/dt = kpb?, where ¢ is time. We define
dimensionless variables by

B=b/pe v=p/po T=kpit. (2a)
in terms of which the reaction rate equations become
dy/dr = —yf?, dp/dr = yf7, (2b)
subject to the initial conditions
y(0) =1, B(0)=e¢, (2¢)

where € = b,/p, is the dimensionless initial concentration of the autocatalyst, B. The
solution of the initial-value problem (2) is readily obtained as

I B\ (+eB—e)
y=lte=p, T‘(1+e>2[h‘{e(1+e—ﬂ>}+ f ] 24)

This shows that #— (14¢), ¥ >0 as 7— 00, so that the autocatalyst, B, consumes all
of the reactant, P, as we would expect. However, if the initial concentration of the
autocatalyst, B, is small compared with the initial concentration of the reactant, P,
so that 0 < e < 1, there is an induction period before the concentration, g, increases
significantly. By analysing the exact solution (2d) we find that for 0 < e < 1 the
solution develops in two asymptotic regions, with

A

To+0E), as e>0, with F=0(1), ()

—_° 2 =1—

where 7 = e7. The expansions (3a) become non-uniform when 7 = 1 —¢lne+ O(e), and
we have

B =By(T)+0(e), y=1=p(T)+0), (30)
T=0(1), T<0,
T>01), T>0,
where T'= (7—1+e¢elne)e™. The function By(7) is defined implicitly by

as €~ 0, with

Bo ] 1 -
1 ———1-T=0.

" [1 - /30 :80 0 (30)
Expansions (3b) remain uniform as 7'— + 0o. Thus, for ¢ < 1, cubic autocatalysis in
a well-stirred system is a clock reaction with a well defined induction period of
duration 7 = 7, where 7, = ¢ ' —Ine+0(1), as e 0. A graph of the solution (2d) is
illustrated in figure 1 for e = 0.01, which clearly shows the changes in # and 7y that
occur when 7 =7, ~ 100 in this case. In terms of the physical variables we have
shown that for 0 < b, <€ p,, cubic autocatalysis in a well-stirred system is a clock
reaction with an induction period of duration ¢, ~ 1/k, p, b,.

(b) A simple model with an inhibitor
In this section we study the system

P—>B, rate kyp, (4a)
B+C—-D, rate Fk bc, (4b)
Phil. Trans. R. Soc. Lond. A (1992)
24 Vol. 340. A
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Figure 1. The solution (2d) for ¢ = 0.01.

where C is an inhibitor and D is an inert product with concentrations ¢ and d
respectively, and k, and k, are reaction rate constants. If the reaction step (4b)
typically proceeds much more rapidly than step (4a), the system models a clock
reaction. The induction period is caused by the rapid consumption of the clock
chemical, B, by the inhibitor, C, which keeps the concentration of B low until C is
completely consumed. The reaction step (4a) then causes the concentration of B to
increase. The presence of an inhibitor can be used to explain the behaviour of many
of the reactions listed in the introduction.
The reaction rate equations for the concentrations p, b and ¢ are

dp/dt = —k,p, db/dé = kyp—k,be, dc/dt =—Fk, be. (5a—c)

The concentration, d, of the inert product, D, is then determined by conservation of
matter as, d = c¢,—c, where we have assumed that the species B and D are not present
initially so that, p = p,, b = 0,¢c =¢,,d = 0, at t = 0. Equation (5a) can be integrated
immediately to give

p=poe . (6a)

By subtracting equation (5¢) from equation (5b) and integrating once we obtain
¢ =b—py(1—e"" +cg, and hence arrive at a single first order ordinary differential
equation for b, namely,

db/dt = kypye ot —k, b{b—py(1 —e oty +¢ ). (6b)

It is now convenient to define dimensionless variables by, f=b/c,, y =c¢/c,, 7=
kopyt/cy, in terms of which equation (6b) becomes

y=p—et(1—e)+1, (7Ta)
dp/dr = e —Kp{f—e(1—e)+ 1}. (7b)

The dimensionless parameters ¢ and K are defined by,
€ =Co/po, K = kyc5/kypy, (8)

where ¢ is the dimensionless initial concentration of the inhibitor, C, and K is a
measure of the typical reaction rate of the step (4b) relative to that of (4a). We
require a solution of the Riccati equation (7b6) subject to the initial condition

B0) =0, Ya)
Phil. Trans. R. Soc. Lond. A (1992)
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Mathematical modelling of chemical clock reactions. I 573

which is readily obtained as
1 —2 — €T
f=el(1—em)—1+ i exp [K{(1—e ) 7+e3(1—e™)}] , 9b)
Kf exp [K{(1—e)s+e %1 —e %)} ds+1

0

after which (7a) becomes

Y= i exp[K{(1—e¢ ) 7+e2(1—e)}] . 9¢)
Kj exp [K{(1—¢ 1) s+e2(1—e*)}]ds+1

0

This solution was first obtained by Chien (1948) who studied the reaction scheme
(4a,b) but made no attempt to analyse the qualitative form of the solution (95, c),
which is not immediately obvious. It is, however, clear from (9b,¢) that

p—et—1, y>0 as 750 (0<e<1), (10a)

p—0, y—>1—¢?! as 7>00 (e>1). (100)

In terms of the physical variables, if ¢ < 1 (p, = ¢,) the precursor, P, is in excess over

the inhibitor chemical, C, so that C is completely consumed, whilst if € > 1, (¢, > p,)

the initial concentration of P is not large enough to consume all of the inhibitor
chemical, C.

We now examine the solution (9b, ¢) under the additional assumption that the

precursor chemical, P, is initially in large excess over the inhibitor chemical, C, so
that 0 < ¢ < 1. We expand /)’ and vy as

pirie,K) = By(r:K) +o(1), | (11a)
')/(T;G,K)=)/I(T;K)+O(1) as e¢—~>0 with T=0(1).J

After substituting these expansions into equations (7a, b) we obtain the leading order
problem

yi=p—7+1, df/dr =1-KB(fi—7+1), (0)=0. (116-d)
The solution of the initial-value problem (11¢,d) is readily obtained as

e tK(—1)? e tK(r-1)°

ﬂ =T— 1 + ’ )/I = T )
K f e K6~V g4 73K KJ e 6D’ g4 7K
0

0

(12a,b)

which is clearly the limiting form of the solution (95, c) as € >0 with 7 = O(1). From
(12a,b),
Br(7; K) ~ 7= 1+ (K) O yy(13K) ~ 0 (K) e #07, (13a,b)

as 7 00, with

00 -1
¢ (K) = [K f e—%K<s—1)2ds+e—%K] , (13¢)
0

and we note that ¢ (K) ~ K‘é/\/(271), as K— 0.

The solution (12a, b) is not in agreement with (10a) as 7— oo, which indicates that
expansions (11a) must become non-uniform as 7— 00. An examination of the full
solution (95, ¢) then shows that this non-uniformity arises when 7 = O(e™'). We can

Phil. Trans. R. Soc. Lond. A (1992)
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574 J. Billingham and D. J. Needham

regard the expansions (11a) as the inner solution and now construct an outer
solution, valid when 7 = O(¢™?), as ¢—>0. The leading order inner solution (12a,b)
shows that f; = O(e™*) and v, is exponentially small when 7 = O(¢™!). Appropriate
scaled variables are therefore, T' = e, B = ¢f, y = 0o(¢")Vn > 0, as ¢ > 0. After writing
equation (7b), in terms of these variables, we expand B as,

B(T;¢,K)= % ¢"B"W (T;K)+E(T;K) as ¢>0 with T=0(1), (l4a)
n=0
and E(T;K) = o(e") for all » > 0. On substituting into the scaled equation and

solving at each order (subject to matching with the inner expansion (11a) as
T—0) we readily find that

BY) =1—e", B{=—1, BY=0 for n=23,. (145)

out —

Finally, we obtain the equation
dE/AT = —(K/e)(1—e T—e) B (14¢)
for the exponentially small term in (14a). An integration of (14¢) readily gives
E(T;K) =ec,(K)exp[— (K/e*) (T—1+e T —eT+1+0(c%))] (14d)
after matching to (13a). Thus we have in the outer region, via (14a—d),
Birie,K)=¢e¢*1—e")—1+c, (K)exp[— (K/e?)(T—1+e T —eT+1ie?

oEN+..., (14e)
v(1;6,K)=c (K)exp[— (K/e®) (T—1+e T—eT+1*+ O(*)] + ...,

as €0 with T'= O(1). These expansions are in agreement with (10a) as 7 o0, and
complete the asymptotic solution of the initial-value problem (7b), (9a) for 0 < ¢ < 1.

We now investigate the possibility of clock reaction behaviour in the solution of
the inner problem (12a, b). We expect that this type of behaviour arises when the
reaction step (4b) typically proceeds much faster than the reaction step (4a), so that
K> 1. We can determine the asymptotic structure of the solution (12a,b) via
Laplace’s method. However, this structure can be analysed more effectively by using
the method of matched asymptotic expansions to construct the solution of equation
(11c¢) subject to the initial condition (11d) as K — o0.

After noting that the initial condition (11d) shows that >0 as 70, an
examination of equation (11 ¢) shows that appropriate scaled variables are, ﬁ’ Kg,,
7 = K7, in terms of which equation (11¢) and initial condition (11d) become,

fr=1=p—K7B(—%), o) =0, (154, 0)
We label the region where 7 = 0(1) as region I and expand ﬁA(f;K) as
B#K) = fy(F)+ KB, (F)+o(K™Y), as K>, with 7#=0(1).  (16)

After substltutmg from (16) into (15, b), expanding and solving at each order in turn
we readily obtain

fy=1—e7, f,=F—2—(F—2F—1)e " +e ¥ (17)
1

Expansion (16) now shows that, ﬁA’~ L+K7'7+... as K—>o0, for 7> 1. Thus,
expansion (16) becomes non-uniform as 7 — 00, in particular when 7 = O(K) and g =
O(1). To obtain a uniform asymptotic expansion for §; when 7 = O(K) we introduce

Phil. Trans. R. Soc. Lond. A (1992)
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Mathematical modelling of chemical clock reactions. I 575

region 11 in which the appropriate variables are 7 and f = Kp,. We expand f in
region II as

Br K) = B(r)+ KB, (1) +o(K™Y) as K->, with 7=0(1). (18)

On substituting this expansion into the scaled equation (11¢), we immediately obtain
the functions g, and g, as, By(7) = 1/(1—7), fi(1) = —2/(1—7)3. After substituting
these into expansion (18) we find that this satisfies the appropriate matching
conditions with expansion (16) in region I as 7~ 0. In addition, expansion (18) clearly
becomes non-uniform as 7> 1, in particular when 7 = 1 —O(K™%) and § = O(K?). To
deal with this_»non-luniformity we introduce region III, where appropriate scaled
variables are § = K3f|, 7 = K*(1—1), and we expand / as,

BT K) = By(T)+O($(K)) as K-—>oo, with 7=0(1), (19)

and ¢(K) = o(1) as K - o0. After substituting expansion (19) into the scaled equation
(11¢), the leading order problem is readily solved, subject to matching with
expansion (18) in region II, to give

Bo(T) =T+e / f eT#ds (20)

By considering the exact solution (12a) we find that ¢(K) = O(K e t¥) as K > 00 80
that the next term in the expansion (19) is exponentially small. Clearly, B, ~ 7 as
700 and, from the definition of § and 7, a further non-uniformity arises when
7 = O(K?), § = O(K?). To deal with this non-uniformity we introduce region IV, where
B =0(1) and 7—1 = O(1), and expand f; as,

By=pBy(r)+o(1) as K-> with 7—1=0(1). (21)

After substituting expansion (21) into equation (11¢) we obtain at leading order,
after matching to expansion (19) in region III as 7— 1%, g, = 7—1. This completes
the asymptotic solution of the initial-value problem (11c¢,d) as K- c0. We can
summarize the behaviour of #; and vy, from equation (11b), at leading order as

region I: 1=0K™), pi~K?'(1—e™),
vi~1—K'7 as K—o with 7=Kr; (22a)

region II:  O(K™') <7< 1—0K™), py~K'(1—1)7",
yi~1—7 as K—>o0; (22b)

region III: |r—1| = O(K™¥), p ~K¥r+e ([T e # ds)™},

yi~ K e ([T e ds)? as Koo with 7=Kir—1); (22¢)
region IV: 7> 1+0K™), pi~71—1,y,=0K™")¥n>0 as K- oo. (22d)
The solution of the initial-value problem (11¢, d) for K = 1000 is illustrated in figure
2a. This was obtained by integrating equation (11 ¢) numerically using a fourth-order
Runge-Kutta method and clearly displays the asymptotic structure described in
(22). Region I is a thin initial transient region where f; increases to become of O(K™).
In region II, B; remains of O(K™') and increases slowly whilst vy, delcreases linearly.
As the solution enters region 111, B; and y; are comparable, of O(K2). In region III,
v: becomes exponentially small, whereas f; starts to increase more rapidly. In region

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. The solution of the initial-value problem (11) for (a) K = 1000, (b) K = 1, 10, 100.

IV, y; remains exponentially small, whereas f; becomes of O(1) and grows linearly.
Figure 2b shows the concentration f; for various values of K, and indicates that the
asymptotic structure (22) develops and becomes more sharply defined as K increases.

We have now constructed the asymptotic solution of the initial-value problem
(70), (9a) for 0 < ¢ € 1 in an inner region and an outer region and also developed the
asymptotic solution of the inner problem (11c¢,d) for K > 1 in four asymptotic
regions. The solution of the inner problem for K > 1 has the characteristics of a clock
reaction, where B acts as the clock chemical. There is a well-defined induction period
in region II which ends in region I1II when 7 =7, = 1+0O(K™%) as K > 0.

We can now describe the behaviour of the chemical system (4) when K > 1 and
€ <€ 1 (equivalently, k, ¢; > k,p,and ¢, < p,, so that step (4b) typically proceeds much
faster than step (4a) and the reactant, P, is in large excess over the inhibitor () in
terms of the physical variables b, ¢ and {. After an initial transient period, with
duration of O(1/k,c,), the concentration of the clock chemical, B, increases to
become of O(k,p,/k, c,). The concentration of B increases very slowly until ¢t = ¢, =
Co/Po ky. Meanwhile, the concentration of the inhibitor, C, decreases linearly until
t = t,, when it becomes small. At ¢ = ¢, the concentration of B starts to increase more
rapidly and the inhibitor, C, is effectively completely consumed. For ¢ > ¢, the
concentration of B increases due to the decay of the reactant, P, alone and, b
Po—Cq, as t—>c0. We note that the end of the induction period, ¢, = ¢,/p, k,, occurs
when the decay of P via step (4a) has produced an amount of B equal to the initial
concentration, ¢,, of C, which effectively consumes C completely.

In this section we have identified two chemical mechanisms which can lead to clock
reaction behaviour and studied a simple example of each. We will refer to these
mechanisms in the following sections as type 1 and type 2.

Type 1. The rate of production of the clock chemical, B, is small when b is small
and large when b is large. In addition, b is small initially (§2a).

Type 2. The clock chemical, B, is supplied to the system by some reaction
mechanism, for example step (4a), above. In addition, an inhibitor, C, is present
initially, and reacts rapidly with B to keep the concentration b small until C is
completely consumed, when b can increase (§2b).

We note that in the study of chain reactions the type 2 reaction mechanism is
known as inhibition and the corresponding induction period as an inhibition period,
whilst the induction period due to a type 1 mechanism is referred to as such (Dainton
1966). However, previous studies of solution phase clock reactions such as those
listed in §1 do not distinguish between these two mechanisms.

Phil. Trans. R. Soc. Lond. A (1992)
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In the following section we examine a reaction scheme which represents a
combination of those which we analysed above, by combining autocatalysis with the
action of an inhibitor.

3. Indirect autocatalysis with an inhibitor: the iodate-arsenous-acid
reaction

In this section we examine a reaction scheme that consists of two steps which,
overall, are autocatalytic in one of the reactants, A. In addition, the second step
represents the action of an inhibitor, C, on the clock chemical, B. A simple scheme
which is a combination of the two systems that we studied in §2 is,

P+2A—B, rate k,pa?®, (23a)
B+C—3A, rate k, be, (230)

where A is a reactant with concentration a. The system (23a, b) is, however, closely
related to a well-known model of the iodate—arsenous-acid reaction and we take this
opportunity to present a careful analysis of this model. The iodate—arsenous-acid
reaction can be described by two component steps:

(i) the Dushman reaction (Dushman 1904 ; Liebhavsky & Roe 1979)

10; +51"+6H* > 31,+3H,0,  rate (b, +k[I"]) [TO;][H*2[T],  (24)
(ii) the Roebuck reaction (Roebuck 1902)
I, + AsO} + H,0 > AsO3 4+ 21"+ 2H™", rate ky[I,][AsO3]/[T7][H], (25)

where kb, & 4.5 x 10°M s, k, ® 4.36 x 105 M™* s, ky & 3.2 x 1072M s7! are reaction
rate constants and [X] is the concentration of the chemical species X. The form of
these reaction rate laws and the values of k,, k&, and k&, are determined experimentally.
Experiments on this reaction are often performed in a buffered solution, so that the
acidity is constant, and therefore in our analysis we assume that [H*] is constant.
The basic kinetic model of the reaction is then

P+5A 3B, rate k, h’pa+k, h®pa®, (26a)
B+C—2A, rate k;bc/ha, (260)

where P=10;, A=1", B=1,, C=As03 and A= [H"] is a positive constant. A
comparison of the two systems (23) and (26) shows that the basic structure of the
reaction steps is very similar with A acting as an indirect autocatalyst and C playing
the role of the inhibitor. Although the reaction rate laws are different we find that
the qualitative behaviour of the two systems (23) and (26) is identical. Finally, we
note that this model scheme with C = HSO}™ also gives a good description of the
kinetics of the iodine—bisulphate clock reaction (Cooke 1979).
The reaction rate equations for the system (26) are

dp _ da 2k, be

a——kltha—kzthaz, a=—5k1h2pa—5k2h2pa2+ e (27a,b)

D Sk htpat sk, hpar—Fabo de__Ksbe
dt 1 2

Phil. Trans. R. Soc. Lond. A (1992)
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By integrating appropriate linear combinations of equations (27) we find that,
p=3%c—b—cy+3p,), a=3—c—5bb+cy+3a,), (28a, b)

where p=p, a=ga, b=0, c=¢, at t=0. (29)

On substituting from (28) into (27 ¢, d) we obtain the reaction rate equations for b and
c as,

db/dt = h*(c—b—cy+3p,) [k (—3¢—3b+ 360 + )
+hy(—3c—2b+1c,+ay)?]—kybe/h(—3c—3b+3c,+a,),  (30)
de/dt = —kybe/h(—3c—3b+3ic,+ay). (31)

We now introduce dimensionless variables as, 7 = p/c,, @ = a/c,, f = b/c,, ¥ = ¢/c,,
7 = kyh*c3t. In terms of these variables, (28)—(31) become

T=Yy—p—1+31), a=3}—y—58+1+3e), (32a,b)
ap/dr = (y—f—14+31) B~y =3B+3 o)+ (—hy =3B +i+e)
—Kpy/(—sy—3f+5+e), (32¢)
dy/dr = —Kfy/(—sy —3f+35+e), (32d)
m=A, a=¢ pf=0, y=1 at 7=0, (32¢)
where the four dimensionless parameters are
A=1p/cy, €=ay/cy, K=ky/kyh’, 6=k /kyc,. (33)

The parameters A and ¢ are the dimensionless initial concentrations of the reactants
P and A respectively. The parameter K measures the reaction rate of the step (265)
relative to that of the step (26a), whereas 0 is a measure of the degree of quadratic
autocatalysis relative to cubic autocatalysis in reaction step (26a).

The second-order autonomous system of equations (32¢, d) subject to initial
conditions (32¢) is the full initial-value problem for the time evolution of the
concentrations £ and y, and hence, via (32a, b), 7 and a. To determine the nature of
the solution of this initial value problem we first consider the behaviour of solutions
of equations (32¢, d) in the (4, y) phase plane. The system (32¢, d) has six equilibrium
points at (0,1—3A), (3A—1,0), (}[3e+30+1],0), (0,3¢+35+1), (0,3¢+1) and
(3¢ +1),0). The point (0,1—3A) has eigenvalues and associated eigenvectors,

py = —K(1—=30)/(A+¢€), py=—0A+e€)—(A+e), (34a)
e, = (L1, e, = (ugm)", (34b)

and hence is a saddle point for A >1 and a stable node for 0 < A < 1. The point
(3A—1,0) has eigenvalues and associated eigenvectors

v, = —8Ee+2—50)—(e+2—5N)%, v, = —K@BA—1)/(e+2—51),  (34¢)
e, = (1,0, e, = (117 (34d)
and hence is a saddle point for 0 < A <1 a stable node for 1 <A <i(e+2), an

unstable node for {(e+ 1) < A < Y(e+2+d) and a saddle point for A > L(e+2+7). The
point (}(3¢+38+ 1), 0) has eigenvalues and associated eigenvectors

i, = K(3¢+38+1)/50, Ji,=0(5A—e—0—2), (35a)
€ = (i, — s 3i85) " €, = (1,0)%, (35b)
Phil. Trans. R. Soc. Lond. A (1992)
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and hence is a saddle point for 0 < A < (e+2+4) and an unstable node for A >
$(e+2+0). Finally, the point (0,3¢+ 30+ 1) has eigenvalues 7, and 7, given by the
roots of the quadratic equation

P—aq, 7—a, =0, (35¢)
where a, =5d8(e+0+A)+K(3e+36+1)/8, a,=K(e+d+A)(3e+30+1). (35d)
The associated eigenvectors are

g, = (7, K(Be+35+1)/0)%, e, = (v, K(3¢+35+1)/0)T. (35e)

Since a, > 0 for A > 0, equation (35¢) shows that 7, 7, < 0 and hence the equilibrium
point (0,3e+36+1) is a saddle for all A > 0. The remaining two equilibrium points
are non-simple since they lie on the singular line v 458 = 3¢+ 1, which we label as L.
In the neighbourhood of L, away from the equilibrium points, 8, ~ v,, and hence
integral paths meet L with unit gradient. A further consideration of equation (32d)
then shows that in the first quadrant of the (§, y) phase plane integral paths originate
singularly at L at finite time, whereas in the second and fourth quadrants integral
paths terminate singularly at L at finite time.

To study the behaviour of integral paths in the neighbourhood of the equilibrium
point (0, 1+ 3¢) we define new variables,

=B, y=1+3¢+C. (36a)

After substituting these new variables into equations (32¢, d) we find that for
|B|, |C] <€ 1, at leading order,

dB 3K(1+3¢)B  dC 3K(1+3¢)B

P de+A) (BB+C)+ GE10) ' dr . (GET0) (36b, ¢)
These equations admit solutions which pass through the equilibrium point of the
form,

B =C+0(C), B=—§%%)§%+o(02) as C—0. (37a, b)
On integral paths of the form (37a) equation (36¢) shows that
C = 1K(1+ 3¢) 7+ const. (38a)
whilst on integral paths of the form (37 b),
C = const. eV, (38b)

Equation (38a) shows that B = 0, C' = 0 is not an equilibrium point in terms of the
dynamics on paths of the form (37a). However, on paths of the form (37b), B—0 and
C—0 as 7> —00. The phase portrait of the system of equations (365, c) is sketched
in figure 3 in the (B, ) phase plane. To determine the behaviour of the integral paths
in the neighbourhood of the equilibrium point (3(1 4+ 3¢), 0) we define new variables as

B=%1+3¢)+B, v=0C. (39a)
At leading order for |B|, |C] < 1, equations (32¢, d) become

dB _ s o v mpa oy, 3K0L+36C  dO0 _ 3K(1+3¢)C
dT—56(e+2 5A) (5B +C)+ 56BL0) " 4= 5(GB10) (390, c)

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. A sketch of the phase portrait of the system of equations (365, ¢) in the
(B, C) phase plane.

for: (a) A > He+2), (b) 0<A<ie+2).

These equations have the exact solution,
B = const. eX¢T27507 (7 = (), (40a)
and also a solution of the form,
B=C+o0(1), C=1K(1+3¢)T+const.,, as C-0. (400b)

The point B = C = 0 is therefore not an equilibrium point in terms of the dynamics
on paths of the form (40b). However, on the integral path (40a), B0, C'—~0 as
7> o0 for A > }(e+2), whereas B—~0,C >0as 7> — oo for 0 < A < }(¢+2). The phase
portrait of the system of equations (390, ¢) is sketched in figure 4a for A > (e +2) and
in figure 46 for 0 < A < 1(e+2), in the (B, C) phase plane. Finally, we note that the
system of equations (32¢, d) has two integral paths which are straight lines, namely,
y=0and y=p8+1-3A.

We now turn our attention to the solution of the initial value problem (32c—e).
Since we have enough information to sketch the phase portrait of the system of

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 5. (@) A sketch of the phase portrait of the system of equations (32¢, d) in the (8, y) phase
plane for 0 < A < 3. The equilibrium points are labelled as e, = (0,3¢+1), e, = (0,3¢+35+1), e, =
(0,1-31),e, = (384—1,0), e; = (3(3¢+1),0) and e, = (2(3¢+30+1),0). (b) The solution of the initial
value problem (32) for A =03,¢=1,6=1, K= 1.

equations (32c¢, d) for all €, A, § > 0 we can determine the behaviour of the integral
path with £ =0, y = 1 at 7 = 0 (which we label as S;) that represents the solution of
the initial-value problem. We find that there are three cases to consider.

(i 0<A<
The equilibrium point (0, 1-3A) is a stable node, whereas the equilibrium point

(3A—1,0) is a saddle point and lies outside the first quadrant of the (f,vy) phase
plane, which is sketched in figure 5a. Now consider the region R, defined by

R={B7):0,7=20,14+3c—-5=>y > p+1-3A}. (41)

Equations (32¢, d) show that no integral path is directed out of the boundary of the
region R. Therefore, via the Poincaré-Bendixson theorem, all integral paths that
enter B must be asymptotic to the equilibrium point (0,1 —3A) as 7> 00, since this
is the only stable equilibrium point which lies within R. In particular, the integral
path S,, which represents the solution of the initial-value problem (32c—e), is
asymptotic to the equilibrium point (0, 1—3A) since it enters the region R at 7 = 0.
Therefore,

7>0, a—>A+e, f—>0, A>1-31 as 7> 0. (42)

A typical solution is illustrated in figure 5b for the case A =0.3,¢e=1,6=1,K = 1.
This was obtained by integrating equations (32¢, d) numerically using a fourth order
Runge-Kutta method. In Hanna et al. (1982) this is referred to as the case of excess
arsenous acid. The reaction is effectively just the autocatalytic conversion of P =
10; to A=1", and C = AsO}™ is not completely consumed.

(i) 3 <A< ie+2)

The equilibrium point (0, 1 —3A7) is a saddle point and lies outside the first quadrant
of the (8, y) phase plane, whereas the equilibrium point (34 —1,0) is now a stable
node and lies within the first quadrant, which is illustrated in figure 6a. By the

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 6. (@) A sketch of the phase portrait of the system of equations (32¢,d) in the (8,v) phase
plane for § < A < }(e+2). The labels e,—e, are defined in the caption for figure 5. (b) The solution
of the initial-value problem (32) for A =0.5,e=1,0=1, K = 1,

argument given above, the integral path S, which represents the solution of the
initial-value problem (32c-e) is asymptotic to the only stable equilibrium point
which lies within the region R which in this case is the point (3A—1,0). Therefore,

7>0, a>2+e—5A, F->3A—1, y>0 as 7->o. (43)

A typical solution is illustrated in figure 66 for the case A =0.5,e=1,8=1, K = 1.
In Hanna et al. (1982) this is referred to as the case of excess iodate, along with case
(iii) below. In this case there is a sufficient concentration of P = 103 present initially
to produce enough B = I, to consume all of the inhibitor, ¢ = AsOj~, but not enough
P to completely consume all of the reactant A = 1.

(iii) A > }e+2)

The equilibrium point (0,1—32) is a saddle point and lies outside the first
quadrant of the (f8,7) phase plane. The equilibrium points (3A—1,0) and
(3(3¢+3d+1),0) are coincident when A = L(e+2+4) and undergo an exchange of
stability via a saddle-node bifurcation. However, these points do not affect the
behaviour of the integral path S, since they lie outside the region R. The (g, y) phase

plane is sketched in figure 7a for A > }(e+2+4). By the argument given above, the
integral path S; is now asymptotic to the point (3(1+43¢),0) as 7 0. Therefore,

m>3(5A—2—¢), a->0, f->11+3¢), y—>0, as 7>o0. (44)

A typical solution is illustrated in figure 75 for the case A = 0.8, ¢ = 1,6=1,K=1.
In this case there is a sufficient concentration of P = I0; present to produce enough
B =1, to consume all of the inhibitor, C = AsO%  and then all of the reactant,
A=T1.

These three cases are in good agreement with experimental observations of the
behaviour of the iodate—arsenous-acid reaction, as described by Hanna et al. (1982).
The indicator that is generally added to the reaction mixture is starch. This leads to
a colour change from a clear solution to a black solution in the presence of a

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 7. (a) A sketch of the phase portrait of the system of equations (32¢, d) in the (8,7y) phase
plane for A > (e +2). The labels e,—e, are defined in the caption of figure 5. (b) The solution of the
initial-value problem (32) forx=08,¢e=1,6=1 K=1.

significant concentration of the clock chemical, iodine, which is represented by B in
the reaction scheme (26). In case (i) the concentration, £, of iodine reaches a
maximum and then decays to zero as 7— 0. The reaction mixture therefore becomes
black for a short period and then becomes clear again. In case (ii) and (iii) g~
constant as 7— 00, which results in a permanently black reaction mixture. Either of
these types of colour change can occur after a significant induction period. The
iodate—arsenous-acid reaction can, therefore, behave as a clock reaction and we now
turn our attention to the possibility of this type of behaviour in the solution of the
initial-value problem (32c—e).

As a preliminary, we consider the dimensionless parameters given in (33) In the
typical experiments outlined in Hanna et al. (1982) a, ~ 107°M, ¢, = 107 M, p, ~
10~*M and 4 ranges between 8 x 107*M and 1.3 x 1072 M. Combined with the values
for k,, k, and k, given earlier this leads to e ~ 1073, § & 107* and A &~ 1. The parameter
K is very sensitive to changes in 4 = [H*] and decreases from approximately 1000 to
1 as h increases from 1073M to 1072M. Clearly in these experiments 0 < e < 1 with
& = O(e) and, for sufficiently low values of  (low acidity) K > 1. We now show that
when ¢ <1 and K = O(1) clock reaction . behaviour occurs due to the type 1
mechanism, whereas for ¢ = O(1) and K > 1 clock reaction behaviour arises due to
the type 2 mechanism. We also find that when ¢ < 1 and K > 1 the type 1 mechanism
is dominant during the long induction period.

(a) Asymptotic solution of the initial-value problem for 0 < e < 1 with & = O(e) and
K=0(1)

Here we examine the initial-value problem (32c—¢) when € < 1 with ¢ = O(e) and
K = O(1), which is in line with the parameter values appropriate for the experiments
of Hanna et al. (1982), and we may expect clock like behaviour of type 1. We define
the constant, 4, by 6 = de, with 4 = O(1) as ¢—>0, and develop an asymptotic
solution of the initial-value problem (32) for 0 < e < 1. We find that there is an
induction period during which the concentration § remains small, of O(e®). The
solution during the induction period develops in two asymptotic regions, which we

Phil. Trans. R. Soc. Lond. A (1992)
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label as reglon I and region II. Approprlate scaled variables for region I are, = 63/>’
y = 1+¢€%, 7=¢7, and we expand g and 7 as

/)’—-ﬁ’o+e/>’1+o ), YV =7o+€Y,+o(e*) as e—0, with 7=0(1). 45a)

After wrltlng equations (320 d) in terms of the above scaled variables, substltutlng
expansions (45a) for ﬂ and 7 and solving the resulting equations for ,30, b7 and 7,
we obtain

s B3A(4+1)

s . 3A(4+1
Bo= K“_‘(l'"e KD, P = ( )

o (L—e " —K#), (45b)

as the solutions which satisfy the initial conditions given by (32e¢). For brevity, the
expressions for g, and 7y, are not presented, but given in Billingham (1991).
Expansions (45a) now show that

5 _BAA4+1) | ,30%4+1)(24+3)7
RS e < o(e®), (d5¢)
P~ =34+ 1)7—e23X2(4 + 1) (4 +2) 2 + o(e?),

ase—~>0, for 7 > 1 These approx1mat1ons become non-uniform as 7 — o, in particular
when 7= ﬁ O(1) and y=0(c?), and the solution enters reglon II1.
Appropmate scaled Varlables in region II are, f = €%, y = 1+ey, 7=¢€'%, and we
expand f and 7 as

B=Pfy+o(l), §=F,+0(1) as >0, with 7=0(1). (46a)

After writing equations (32¢, d) in terms of the above scaled variables and solving the
leading order equations, we obtain the solutions

5 AL+ e 3(A41) (1—eM)
By = Yo =
0o~ A + 1 ,141)3 ) 0 (A + 1 _e/\A-r) )

(46b)

which match with expansions (45a) in region I as 7 0. This approximation clearly
becomes non-uniform as 7—7,, where

7o = [In(4+1)]/42, (46¢)

in particular, when 7 = 7,— O(e), ,é = 0(e73), 7 = O(¢™'). To complete the solution, we
introduce a final asymptotic region, which we label as region 111, where g = 8, +o(1),
Y =7Yo+o(l), as €>0 with T'= O(1), and 7 = €77, + 7. In terms of these variables,
equations (32c¢, d) become, at leading order,

dg Kpyy
a‘Tg=(7’o—ﬂo—1+3/\)(—%’)’o—% o"'%)z—m» (47a)
dy, KBy,
0 _ 47b)
dr (—3Yo—300+ (
which are to be solved subject to the matching condltlon,
Bo—~0, vo—>1 as T——oo. (47¢)

Equations (47a, b) are equivalent to equations (32¢, d) with § = ¢ = 0. For 6 > 0,
¢ > 0 there is a unique solution of equations (32¢, d) that satisfies #—0, y > 1 + 3¢ as
T—> —00, with £ >0, y < 1, which we have labelled as S, in figures 3, 5a, 6a, and

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 8. The solution of the initial-value problem (32) for ¢ = 0.01, § = 0.01, K = 1 and
(@) A=10.3, (b) A =0.8.

7a. It is readily shown that this is also the case when & = ¢ =0, and hence the
boundary-value problem (47 a—c) has a unique solution. We also note that the phase
portrait of the system of equations (32¢, d) in the (5, y) phase plane within the region
R, defined by (41), is qualitatively similar to the phase portrait of the system (47a, b)
in the (8,,7v,) phase plane within the region R,, where R, is equivalent to R with
B =By Y =7, and € = 0. There are, therefore, three cases to consider.

(i) 0<A<3:3y—>0, y,>1-31 as T 0,
(ii) Lo <2 B >30—1, 7,0 as T— o0, (48)
(iii) A>2:6,->L vy,>0 as T—o0.

These cases are equivalent to those described above for the full initial-value problem
(32¢—e), and the asymptotic solution for 0 < e < 1, § = O(e) is therefore complete.
Region I is a thin initial transient region where § becomes of O(e?) and in the (5, y)
phase plane the solution is asymptotic to the integral path S, in the neighbourhood
of the equilibrium point (0,14 3¢). Region II represents a long induction period
during which the solution at leading order is given by the integral path S, in the
neighbourhood of the point (0,1+3¢) with g = 0(¢®) and 14+3e—7y = O(¢). The
induction period ends when 7 = ¢7'7,+0(1) and the solution enters region III. The
solution in region 111 is obtained from the full equations (32¢,d) with e = 6 = 0, and
is represented by the integral path S, at leading order. The behaviour of # and y as
7 00 depends upon the value of A as described by (48), which is in agreement with
results (42), (43), (44) for the solution of the full initial value (32c—e) with e = O(1).
The solution of the initial value problem for ¢ = 0.01, § = 0.01, K = 1 is shown in
figure 8a, b, for A = 0.3 (case (i)) and A = 0.8 (case (iii)) respectively. We have chosen
¢ = § = 1072 for ease of presentation since, although the induction period is ten times
longer for the more realistic values ¢ = 8 = 1073, the qualitative form of the solution
is the same. The time 7, = ¢ ', &~ 231 and 87 for A = 0.3 and A = 0.8 respectively, is
in good agreement with the form of the numerical solution in each case. In terms of
the physical variables, we find that ¢, the duration of the induction period is given

by,
Il /)

~ g d k, <k,c,. 4
0 N ag K ¢y an 1 K Ky C (49)

This expression leads to induction times ranging from a few seconds to a few days,
in good agreement with experimental observations. Since ¢, is very sensitive to
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e (A, K) when ¢ = 8 = 0.01: (a) for K = 1 plotted against A,
(b) for A = 0.3 plotted against K.

Figure 9. Graphs of the function S

changes in h, the acidity of the reaction mixture, expression (49) explains why a
slight mismeasurement of the pH can be unfortunate when the iodate—arsenous-acid
reaction is used in a lecture demonstration and ¢, > 60 min.

Finally, we note that in case (i), 0 < A < 1, the concentration £ reaches a maximum
value, fB,.x, before decaying to zero as 7— c0. We have shown above that the integral
path, Sy, which represents the solution in the (f.v) phase plane, lies within the region
R, defined by (41). Therefore, 0 < S, < 3(A+¢) and hence 0 < B, <1 when 0 <
A<1,and 0 <e < 1. A graph of B, against A for e = 6 = 0.01, K = 1 is illustrated
in ﬁgure 9a. We find that, although f8,,., = O(1) as ¢ >0, since the value of ¢ does not
affect the behaviour of S, at leading order away from the equilibrium point (0, 1 + 3¢),
the numerical value of 8, is small. This is due to the geometry of the phase portrait
of the system (32¢,d) alone. Figure 9b shows a graph of £, against K fore =6 =
0.01, A =0.3. As K> 0, fm.x >0, and we show later that 8, = O(K™1) as K- 0.
Our numerical results also suggest that f,,. —>3(A+¢) as K0, a result which is
readily obtained from an analysis of the initial-value problem (32c¢—¢) for 0 < K < 1
the details of which are omitted here. Thus, S, is numerically small unless K is
sufficiently small and A is sufficiently large. The model therefore implies that for the
iodate—arsenous-acid reaction in the presence of starch, in the case of excess arsenous
acid, (case (i)) the local maximum in the concentration of iodine will not lead to a
perceptible colour change of the reaction mixture unless k,/k,/%c} and 3c,—p, are
sufficiently small.

(b) Asymptotic solution of the initial-value problem for K > 1 with e, § = O(1)
We now consider the solution of the initial-value problem (32c¢—¢) when K > 1 and
€,0 = O(1). In this situation we expect clock-like behaviour of type 2. The asymptotic
solution of (32¢—e) as K— oo is readily obtained and consists of four asymptotic
regions. We glve the details of the solutlon 1n each region at leading order.
Region I: 7=Kr=0(1), B= K'lﬂ ),
7/ =1+KY9{#)+oKt) as K- oo,
where i
B =36A(0+€) (1—e ™), 5= —3eA(d+e)(T+ee —¢). (50), (51)

Region II: O(K™') <1 <1y—O(K™), B=K"f(r)+o(K™)
v = 7( TV + oK) as K- o0,
where 7, is a constant to be determined and

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 10. The solution of the initial-value problem (32) fore =1, 8 =1, K = 1000 and:
(@) A =0.3, (b)) A =0.8.

; ; ; Ay
0=(’)"‘1+3A)(3—%’V—%+€)(—%’}"*‘%‘*‘6)—(—_%77—_'_%—_’_—6), (52a)
V.= —B7/(—s7 +i+te), (520)
subject to matching with the solution in region I as 7—0, which gives
362\ (8 +¢), v—>1 as 7-0. (52¢)

Equation (52a) gives

B= =37 F=7) F—7)*T—7s) (53a)
where 7, = 1—3A, ¥, = 14 3¢, ¥, = 1+ 3¢+ 3J. On substituting for f from (53a) into
equation (52b) we obtain,

dy/dr = =57 —=71) (T—72) (F—7s), (53b)
which is to be solved subject to the matching condition, $(0) = 1. The appropriate
solution of (53b) is readily obtained in implicit form (Billingham 1991). However, the
behaviour of 7 is most easily studied by examining the form of equation (53b). There
are two possibilities.

i 0<A<i

In this case, ¥ is monotone decreasing in 7, with 7 ~1—3A as 7— o0, and hence,
from equations (53a) f—0 as 7—> 0. The approximation in region II remains
uniform in K as 7— c0 and no further regions are required. (Formally, 7, = oo in this
case.) This behaviour as 7— o0 is in agreement with that described in case (i) above
for the full initial value problem. In this case, region I is a thin initial transient region
where # becomes of O(K™'). In region I1 2 remains uniformly small of O(K™!), whereas
v decreases and f—0, y—>1—3A as 7> 0. Clearly, no clock reaction behaviour arises
when 0 < A <3, K> 1 and ¢, § = O(1). The numerical solution of the initial-value
problem (32c—e) is illustrated in figure 10@ when A = 0.3, K = 1000, ¢ = § = 1, and
shows that f remains small for all 7 > 0.

(i) A >4
Equation (53b) again shows that ¥ is monotone decreasing in 7. However, §(7) >0
as 7—>17;, where (53b) shows that

; _In[3+1/¢] In[3+1/(e+d)] In[3—1/A]
O Se+A) d(e+A+0) (e4+A) (e+A+0)
Phil. Trans. R. Soc. Lond. A (1992)
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This leads to f—> oo as 7->7;, and we conclude that the expansions in region II
become non-uniform as 775 This non-uniformity corresponds to the end of the
induction phase and we note that 7, is in agreement with (46¢) when 0 < ¢ < 1 and
8 = O(e). To continue the development of the solutlon we require a further region.
Region I11: 7= Kit—1)) = O(1), f=KB+o0K™>),

y K% +o(K?) as K-> o0,
where

Z ey Nooaiawm  BY By
Br=(3A—1) (e+1) (e+1+0) e+ 7= ey (55a, b)

subject to matching with the solution in region II as 7> — oo, which gives,
B~ (e+Y/7, ¥~ —BA-1)(e+1)(e+i4+8)7, as 7 —o0. (55¢)
The solution of (55a—¢) is determined in Billingham (1991) as,
(e+1)exp[—4BA—1) (e +1+0) 7]
JT exp|—L3A—1)(e+1+6)s2]ds’

o _ (etg)exp[—3(3A—1) (e+35+0) 7]
YT oxp [ —MBA—1) (c+3+0) 7] ds (560)

B=(BA—1)(e+1)(e+i+d)7T+ (56a)

The solutions (564, b) show that % becomes exponentially small as 7 0o, whilst §
increases, becoming linear in 7 as 7— c0. Thus, a further non-uniformity arises as
7> 00, in particular when 7 = O(Kz), with # = O(1) and v exponentially small in K. To
complete the solution we introduce region IV.

Region IV: 7> 1,4+ 0(K™3), B=pf1)+0(1),y=0K™"Vn>0 as K >,
where dB,/dr = —2{B,— (1 —30)HB, — (14 36)}{B, — L(1 + 3¢ + 38)}, (57a)
subject to matching with the solution in region III as 77, which yields

Bo—>0 as 77, (57b)

The solution of the initial-value problem (57a, b) is readily obtained in implicit form
(Billingham 1991). However, the behaviour of 4, is again most easily determined by
studying the form of equation (57a). There are two possibilities.

5 <A <g(2+€)

In this case, §, is monotone increasing with 7, and #, >3A—1 as 7— co. This
behaviour as 7 0o corresponds to case (ii) of the full initial-value problem above.

A>L2+¢)

Again, £, is monotone increasing in 7, and in this case f, > (1 +3¢) as 7> 00. This
behaviour as 7— 0o corresponds to case (iii) of the full lmtlal Valuc problem above.
This completes the asymptotic solution of the initial-value problem (32¢-¢) for
K> 1 with ¢, § = O(1).

For A >3, region I is again a thin initial transient region where £ becomes of
O(K™"). In region II, # increases slowly, whereas y decreases more rapldly until § and
y are of O(K*) as the solution enters region III. In this region, v becomes
exponentially small in K, whereas f increases rapidly to become of O(1). Region IV
(>omplete:> the solution and f—>3A—1, y—>0 as 7-> 00 for L <A < Y2+¢), whereas
B—>5(1+3¢), y>0as7—> o0 for A > L2+e¢). This asymptotic structure corresponds to
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Figure 11. The solution of the initial-value problem (32) for ¢ = 0.01, § = 0.01, K = 1000 and:
(@) A =0.3, (b) A =0.8.

clock-like behaviour due to a type 2 reaction mechanism. Regions I and IT make up
the induction period, which has duration 7,, given by (54). Region III is a transition
region where the concentration of the clock chemical, B, becomes significant, and
region IV encompasses the final evolution of the concentrations £ and y to their
equilibrium values. The numerical solution of the initial-value problem (32¢—e) for
A=0.8, K=1000, 6 =¢ =1 is illustrated in figure 10b. The asymptotic structure
outlined above is clearly visible and 7, ~ 0.212 is in good agreement with this
numerical solution.

We have now shown that the solution of the initial-value problem (32c—e) can
display clock-like behaviour in either of the cases ¢ € 1, K = O(1), A > 0, due to a
type 1 reaction mechanism and ¢ = 0(1), K> 1, A >3, due to type 2 reaction
mechanism. Finally, we examine the form of solutions of the initial-value problem
(32c—e) when € € 1 and K > 1 and we expect that clock-like behaviour will occur with
both types of reaction mechanism acting on the system.

(c) Asymptotic solution of the initial-value problem for 0 <e <1, K> 1

We can determine the asymptotic form of the solution of the initial value problem
(32c—e) for 0 < ¢ € 1 and K > 1 by considering the behaviour of the integral path S,
(which represents the solution in the (f,7v) phase plane) under the two limiting
processes € >0 and K —co. For € € 1 the initial point (0, 1) lies in the immediate
neighbourhood of the equilibrium point (0, 1 +3¢) and remains there for a time 7, =
O(e™') as €= 0. The presence of the equilibrium point (0, 1+ 3¢) close to the point
(0, 1) represents the action of the type 1 reaction mechanism as ¢ 0. For K > 1 the
integral path S lies close to the y axis and for 0 < A <} remains there with g0,
y—~>1—3A as 17— 00. However, for A > 1 the integral path S lies close to the y axis for
7 < 7, = 0(1) as K— o0, and then lies close to the f axis for 7 > 7, with f—>3A—1,
v—>0as7>00 for < A<12+¢) and f—>1(1+3¢), y>0 as 7—>00 for A > L(2+¢).
This is due to the form of equations (32¢, d) for K > 1 which show that for # > 0 and
v >0, 8. and 7y, are large and negative unless fy = O(K™'). This distortion of the
integral paths of the system (32¢, d) represents the action of the type 2 reaction
mechanism as K - c0. When ¢ € 1 and K > 1 the integral path will both originate in
the immediate neighbourhood of the point (0, 14 3¢) and lie close to the axes in the
(B,7) phase plane. For 0 < A <1, # therefore remains uniformly small for 7 > 0 and
no clock-like behaviour occurs as can be seen in the numerical solution for A = 0.3,
K = 1000, ¢ = § = 0.01, illustrated in figure 11a. For A > } we expect that clock-like
behaviour occurs and that the induction period has duration 7, = O(¢™') as ¢ >0,
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K — o0, since the time which the solution spends in the neighbourhood of the point
(0, 1+ 3e¢) is of O(e7!), whereas the subsequent time which the solution takes to reach
the £ axis is of O(1). The numerical solution for A = 0.8, K = 1000, ¢ = § = 0.01 is
illustrated in figure 11b. By comparing figures 106 and 115, with K =1 and K =
1000, respectively, it is clear that when K > 1, ¢ € 1 and A > 1, when the solution
lies in the neighbourhood of the point (0, 1+ 3¢), the type 1 reaction mechanism is
dominant, with the type 2 reaction mechanism only affecting the form of the solution
close to the end of the induction period at 7 = 7, & 87 in this case.

In this section, we have shown that the reaction scheme (26) behaves in a similar
way to the scheme (1) for e € 1, K = O(1) with the type 1 reaction mechanism
dominant, and in a similar way to the scheme (4) for ¢ = O(1), K > 1 with the type
2 reaction mechanism dominant. When ¢ <1 and K > 1 the type 1 reaction
mechanism is dominant during the induction period, whereas the rapid growth of the
concentration of the autocatalyst, B, at the end of the induction period is due to the
type 2 reaction mechanism.

4. Conclusion

In this paper we have examined how two completely different reaction
mechanisms, induction and inhibition, can lead to clock reaction behaviour. We
studied the effect of these mechanisms separately in two simple reaction schemes and
also in a model for the iodate—arsenous-acid reaction. This model reaction scheme can
exhibit induction and/or inhibition depending on the initial concentrations of the
reactants. We found that, when these mechanisms co-exit, induction is dominant
during the induction/inhibition period. For the schemes considered the analytical
methods adopted in the paper have enabled us to obtain simple expressions for
induction and inhibition times in terms of the parameters in the system. Moreover,
this approach provides a systematic method for the qualitative and quantative
analysis of kinetic schemes for the possibility of clock reaction behaviour.

J.B. acknowledges the assistance of an S.E.R.C. Research Studentship. We are also grateful to
Professor P. Gray (Gonville and Caius College, Cambridge) and Dr S. K. Scott (University of Leeds)
for valuable discussions on the nature of chemical clock reactions.
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